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1    Summary 

This grant supported measurements and computations of laminar-turbulent transition on a 
generic scramjet forebody. The computations, described in the appendix, were carried out under 
a subcontract. The experiments were carried out using the new Boeing/AFOSR Mach-6 Quiet 
Tunnel (BAM6QT). Much of the experimental effort was expended in the first phase, completion 
and development of the necessary tunnel, which took longer than expected. Furthermore, 
although the tunnel was operational in April 2001, it is still not running quiet at significant 
Reynolds numbers. However, the tunnel is already successful at providing low-cost operation, 
a significant accomplishment at a time when there is no operational hypersonic quiet tunnel 
ansrwhere, and little or no experimental work on hypersonic laminar instability. 

The work carried out at Purdue has already been documented in a series of AIAA papers 
and other publications. Therefore, the present final report is a summary of past progress, 
current issues, and future plans. Funding for closely related work has also been provided by 
Sandia National Labs, NASA Langley, TRW, and NASA Johnson, so the results presented here 
are due in part to their support. 'Bmnel fabrication was supported primarily by two DUMP 
grants and a gift from the Boeing Company, although the labor of assembling, testing, and 
adapting the components was primarily supported by the present grant and by Sandia. 



2 Introduction 

Hypersonic laminar-turbulent transition is critical to airbreathing hypersonic cruise vehicles 
and reentry vehicles. The present grant supported a continuation of a 13-year effort towards 
obtaining repeatable measurements of the mechanisms of transition on generic shapes, as part 
of a cooperative effort to develop mechanism-based prediction methods. 

The effect of conventional tunnel noise and the importance of quiet tunnels was reviewed 
and described in Refs. [13] and [17]. Conventional tunnels suffer from noise levels that are an 
order of magnitude higher than flight; this noise causes earlier transition, and can also change 
the trends in transition, so that a configuration optimized for laminar flow in a conventional 
tunnel might be far from optimum in flight. A review of the effect of transition on launch 
vehicle design was presented as Ref. [18]. In addition, reviews of the flight data for transition 
were presented at NASA Langley, AFRL/Hanscom, Sandia, SAIC, the Navy Strategic Systems 
Office, and TRW. 

The author participated in NATO RTO Working Group 10, in part with support from the 
present grant. This work resulted in a review of instability and transition on round cones. 
Laminar-instability data near zero angle of attack was reviewed in Ref. [19], while Ref. [22] 
emphasized bluntness and angle-of-attack effects. A NATO RTO document is expected to 
appear based on the results of this working group. A NATO RTO working group focusing on 
hypersonic transition was proposed, but the Exploratory Team investigating the proposal found 
insufiicient European interest. 

3 Results 

3.1 Laser-Perturbation Experiments 

Earlier measurements carried out in the Mach-4 tunnel under previous AFOSR grants have 
now appeared as journal articles [8, 9]. The laser perturbation method is now being considered 
by Roger Kimmel of AFRL for use as an acoustic perturbation method in the BAM6QT. To 
enable this, a 2-inch conformal window was fabricated for the BAM6QT by Metrolaser, with 
support from AEDC and AFRL, and with technical assistance from Purdue. 

3.2 Laser-Differential Interferometer Measurements on Blunt Nose 

Work on a laser differential interferometer (LDI) was also initiated under a past AFOSR grant. 
Experiments were carried out using the LDI for repeatable measurements of the response of a 
blunt-nose flowfield to a locaHzed laser-induced perturbation. These experiments were continued 
and completed while the student was supported by other funds [6, 7]. The results promise to 
form a database for development and validation of time-resolved computations for receptivity 
effects. They also shed light on the blunt-body paradox. 



3.3    Development of the 9.5-inch Mach-6 High Reynolds Number 
Quiet Ludwieg Tube 

The first phase of the research proposed in 1999 was the completion and shakedown of this 
tunnel; in the end this phase consumed the majority of our efforts during 1999-2002. 

The tunnel is the result of development work that began in 1990. A Mach-4 Ludwieg 
tube was constructed at Purdue in 1992, using a 4-inch nozzle of conventional design that was 
obtained surplus from NASA Langley. By early 1994, quiet-flow operation was demonstrated 
at the low Reynolds number of about 400,000 [10]. Since then, this facility has been used for 
development of instrumentation and for measurements of instability waves under quiet-flow 
conditions (e.g., EB£. [20, 8, 5]). However, the low quiet Reynolds number imposes severe 
limitations; for example, the growth of instabihty waves under controlled conditions on a cone 
at angle of attack was only about a factor of 2 [3]. This is far smaller than the factor of e^ - e" 
typically observed prior to transition, and small enough to make quantitative comparisons to 
computations very difficult. 

A facility that remains quiet to higher Reynolds numbers was therefore needed. The low 
operating costs of the Mach-4 tunnel had to be maintained. However, hypersonic operation was 
needed in order to provide experiments relevant to the hypersonic transition problems described 
earlier. Operation at Mach 6 was selected, since this is high enough for the hypersonic 2nd-mode 
instability to be dominant under cold-wall conditions, and high enough to observe hypersonic 
roughness-insensitivity effects, yet low enough that the required stagnation temperature do 
not add dramatically to cost and difficulty of operation. Reference [12] describes the overall 
design of the facihty, and the detailed aerodynamic design of the quiet-flow nozzle, carried 
out using the e^ method. A version of this paper recently appeared in journal form [16]. A 
detailed aerodynamic design of the contraction was also carried out [11]. Reference [11] also 
supplies a preliminary report on the detailed mechanical design of the nozzle and contraction. 
Reference [14] reported on design and testing of some of the component parts, including the 
driver-tube heating, the as-measured contraction contour, the throat-region mandrel fabrication 
and polishing experience, and so on. This reference was the first reported during the present 
grant. 

Ref. [15] reports on the design and fabrication of the support structure, diffuser, and second- 
throat section (which also serves as the sting support). It also reports experience with final 
contraction fabrication, and with operation of the vacuum system. Ref. [15] also reports on the 
contour measurements on the third attempt at throat-mandrel fabrication, which completed 
poHshing with good success. Ref. [23] reports (1) the nozzle fabrication, including some of 
the wall-contour measurements, (2) the contraction-region heating apparatus, (3) the burst- 
diaphragm tests, (4) the bleed-slot suction system, (5) the electroformed throat properties, and 
(6) initial hot-wire calibrations. 

Ref. [24] reports the rest of the measurements of the as-fabricated nozzle, including initial 
measurements of tunnel performance. The mean flow and fluctuations were measured in the 
centerplane using fast pressure transducers (cp. Ref. [10]). Ref. [25] reported on progress in 
tunnel shakedown and instrumentation development, including efforts to achieve the desired 



quiet flow by modifying the geometry of the bleed-slot throat, and initial attempts to measure 
the stagnation temperature in the flow using cold wires. Ref. [2] reported the stress-analysis 
and testing of the initial conformal window, fabricated in 2001, The present tunnel name was 
adopted in Spring 2001. Ref. [21] reported initial hot-wire measurements, the effect of driver- 
tube temperature on tunnel noise, blockage test results, and the effects on quiet flow of nozzle 
temperature distribution and bleed-slot throat geometry. Ref. [22] reported on the seventh 
bleed-slot throat geometry, the effect of polishing the downstream portions of the nozzle, pitot 
measurements on the centerline forward, and the effect of downstream model-mount and diffuser 
conditions on measurements in the nozzle. 

The tunnel is not yet quiet, except perhaps at low Reynolds numbers, where at present the 
nozzle-waU boimdary layers appear separated. This disappointment must be set against the 
difficulty of hypersonic laminar flow control. There is no operational hypersonic quiet tunnel 
anywhere in the world at present. 

The tunnel is successfully operating rehably at low cost for useful runtimes. The core 
flow is uniform, the polished throat remains clean, and large models have been successfully 
started. Hot-wire and temperature-sensitive paints techniques have been successfully developed 
to measure traveHng and stationary wave growth. Although much remains to be done, and 
progress is slower than initially planned, no show-stoppers are evident. The current path 
remains the lowest-cost approach to obtaining detailed measurements of the mechanisms of 
transition under low-noise conditions comparable to flight. 

The only alternative on the horizon would be measurements in a reinstalled NASA Langley 
Mach-6 quiet nozzle; while this would be desirable, the fuU operational costs of this facihty 
would greatly exceed those of the BAM6QT, due to the long run-time and large air supply. 
Furthermore, development of the BAM6QT remains the obvious next step in the development 
of more capable hypersonic quiet tunnels. Development of the BAM6QT and instrumentation 
should continue unless a show-stopper or a better alternative is found. 

3.4    Measurements on Generic Scramjet Forebodies 

EarMer measurements on an axisymmetric forebody appeared in journal form as Ref. [1]. 
The Hyper2000 geometry is very similar to the Hyper-X. A model was fabricated at Purdue 

in 2001-2002 using this geometry. The role of streamwise vortices in transition was studied, 
beginning with initial results reported in Ref. [21]. The measurements were carried out using 
temperature sensitive paints, with roughness elements on the leading edge using as controlled 
perturbers [22]. The vortices are most easily generated using roughness at the leading edge, 
although vortex growth is small until the flrst compression corner is reached. The effect of 
roughness height and spacing is being studied, along with the effect of Reynolds number, with 
the final results to appear in AIAA papers in summer 2003, and in Shin Matsumura's M,S, 
thesis. 



3.5    Computational Work at Arizona State University 

Approximately one third of the present grant supported cooperative computations by Prof. 
Helen Reed's group at Arizona State University. This work was recently summarized in Ref. 
[4]. In additiona, a final report for the subcontract is appended. 

4 Current Status and Future Plans 

Work on hypersonic laminar-turbulent transition continues, with continuing support from 
AFOSR, Sandia, and NASA. AFOSR-funded efforts are now focused primarily toward achieving 
quiet flow. Craig Skoch's Ph.D. thesis work will focus on this topic until quiet flow is achieved. 
Our current effort is aimed at diffuser and model-mount effects, upstream pitot measurements, 
and improved leak detection. 

Erick Swanson recently finished an M.S. thesis performing temperature-sensitive paint mea- 
surements on round cones at angle of attack, looking for crossflow vortices. He wiU shift to 
partial AFOSR support, and continue to look at crossflow and roughness induced transition on 
blunt cones at angle of attack. 

Shann Rufer's Ph.D. thesis wiU be on hot-wire measurements of instabihty waves on blunt 
cones at zero and non-zero angle of attack. She has been supported by Sandia. Plans include 
measurements with controlled perturbations from a glow apparatus. Uncalibrated measure- 
ments have already been obtained on a cone at Mach 6. 

Shin Matsumura performed the temperature-paints measurements on the Hyper2000, and 
plans outside employment after his M.S. thesis in summer 2003. He has been supported pri- 
marily by NASA Langley. Additional work on the Hyper2000 will depend on tunnel progress 
and future funding. 
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Appendix: Report on Computational Work 

Final Report for Computational Subcontract under AFOSR Grant F49620-00-1-0016 
15 Nov. 1999 to 14 Nov. 2002 
Mechanisms of Hypersonic Transition on a Generic Scramjet Forebody 

Helen L. Reed, Professor 
Mechanical & Aerospace Engineering 
Arizona State University 
Tempe, Arizona 85287-6106 

1 Summary 

This grant supported measurements and computations of laminar-turbulent transition on a 
generic scramjet forebody. The computations were conducted at Arizona State University under 
subcontract from Purdue. The present final report is a summary of past progress and future plans. 
Funding for closely related work has also been provided by Sandia National Labs. Computer 
resources were available through the Sandia effort. 

2 Introduction 

2.1 Computational Approach 

To reach high quiet Reynolds numbers, a new Mach-6 quiet-flow Ludwieg tube is being 
developed. Mach 6 is high enough to permit 2nd-mode dominated transition and hypersonic 
roughness effects, but low enough to keep heating-related instrumentation and facility costs to a 
minimum. Mean flow and disturbance measurements are to be carried out on the generic 
geometry at Purdue, and compared to computational results generated at ASU. 

Our computational work focuses on two geometries: (1) The spherically-blunted round cone at 
zero angle of attack, for verification and validation, (2) The centeriine of the Hyper2000 
forebody mcluding the compression comers, for vaHdation. Specifically, we have revisited the 
Stetson experimental case at Mach 8 for verification of our codes. Then we are studying the 
second mode instability at Mach 6 under ideal-gas conditions, modelling both the Schneider and 
Maslov blunt-cone experiments for validation. For AFOSR we are simultaneously studying the 
Hyper2000 forebody under Mach-6 ideal-gas conditions. To then extend the computations for 
the Hyper2000 to hot hypersonic conditions, including non-equilibriimi chemistry, we are first 
studying the theater-missile-defense model of Johnson & Candler at Mach 13,6 (AIAA 97-0554) 
for code verification. 

3 Results 

3.1 Cone 

Using a finite-volume code, the Navier-Stokes equations are solved for a series of flows around 
spherically-blunted cones. These solutions are used to initially perform linear-stability analyses 



to determine the growth of second-mode disturbances. (Nonlinear parabolized stability equation 
analyses are to follow.) Two cases are investigated: the Stetson experiment, and a recent 
experiment conducted at the Institute of Theoretical and Applied Mathematics in Russia. 
Comparisons are made with both basic-state and disturbance-state quantities. For both cases, 
linear-growth regions are identified. For the Stetson case, using an experimentally determined 
wall-temperature distribution for the basic-state appears to give better agreement with the 
experimentally measured growth than does the classical adiabatic-wall boundary-condition. For 
the ITAM case, initial comparisons are made and we anticipate contmuing a careful 
collaboration, 

3.1.1 Introduction 

The central assumption of linear stability theory (LST) is that the disturbance amplitudes are 
small enough that disturbance interactions (either with other disturbances or with the basic state) 
are small enough that they may be neglected. The behavior of a disturbance is independent of its 
amplitude. One of the principal assumptions of LST is that the basic-state flow is locally parallel. 
This means that there is a streamwise direction, in which the flow is approximately constant. It is 
important that flow gradients in the streamwise direction be much smaller than flow gradients in 
the body-normal direction. For the flows considered in this report, the parallel assumption is 
valid. 

Given a parallel flow, one chooses a body-normal direction y, a streamwise direction x, and an 
azimuthal/spanwise direction z. The disturbance state is a linear superposition of normal modes, 
each of which has the following form. 

Q'it,x,y,z) = Q(y) e'('«^^-'«> + C.C. (1) 
Here, Q(y) is the amplitude ftinction, a is the wavenumber in the streamwise direction, fi is the 
wavenumber in the azimuthal direction, and m is the frequency. Each of these quantities is 
potentially complex-valued. If the temporal stability is considered, a is taken as real-valued. A 
disturbance of a certain wavelength is investigated. A linear eigenvalue problem results; the 
imaginary part of a> determines the growth or decay of the disturbance. If the spatial stability is 
considered, m is taken as real-valued. A disturbance of a certain frequency is investigated. A 
non-linear eigenvalue problem, in a and c/, results; with the imaginary part of a determining the 
growth or decay of the disturbance. 

Disturbances within compressible boundary-layers are termed first-mode or second-mode. First 
mode instabilities are also known as inviscid instabilities. Lees and Lin (1946) show that a 
sufficient condition for the existence of an inviscid instability is the presence of a generalized 
inflection point, defined as follows. 

dy{   dy 
= 0 (2) 

Hudson et al. (1997) describe the first mode as a vortical mode and point out that the generalized 
inflection point indicates a maximum in the angular momentum. The second mode is particular 
to compressible boundary layers, and is sometimes referred to as an acoustic mode. In his review 
work, Mack (1984) discusses the physics of these disturbances. One important result is that the 
second-mode wavelength is tuned to the thickness of the boundary layer. This second mode. 



which emerges for flows where a characteristic Mach number is greater than 4, is recognized as 
the most unstable disturbance for high-speed flows. This is confirmed by a series of experiments, 
including the work of Kendall (1975), Demetriades (1977), and Steteon et al. (1984). The first 
mode is distinguished from the second mode by using a local Mach number. This Mach mmiber 
is the difference between the phase velocity of the disturbance (cr) and the basic state velocity 
(M), divided by the local sonic speed (a). 

~    c —u 
M = -^  (3) 

a 
If M^ <l everywhere within the boundary layer, then the first mode may be present. If iW^^ > 1 
somewhere within the boundary layer, the flow is unstable to "Mack" modes, the most imstable 
of which is the second mode. 

As Schneider (2001b) points out, accurate depiction of the growth of a second-mode instability 
wave over a circular cone at zero-angle of attack remains a challenge, both computationally and 
experimentally. Despite the acknowledged limitations of Hnear stabiUty theory, it can still be of 
considerable use towards attaining this goal. 

Experiments can be conducted to identify linear-growth regions; computations can be used to 
investigate more of the details. The series of experiments performed by Stetson et al. (1984), 
who consider the growth of instabilities on right-circular cones (both sharp and blunted) at zero- 
angle-of- attack at Mach 8, serves as a benchmark for subsequent computations. Numerical 
comparisons to the observed growth of second-mode instabilities over the spherically blunted- 
cone are reported by Malik et al. (1990), Esfahanian (1991), Kufiier et al. (1993), and 
Rosenbloom et al. (1999). Agreement with the experimentally observed growth rates can be 
described as qualitative. 

Schneider (2001b) discusses these comparisons in some detail. He concludes that one of the 
major difficulties with these comparisons lies with the signal-to-noise ratio foimd in the stability 
measurements of the Stetson experiment. This speaks to the immense challenges faced by 
experimentalists in this field. The signal-to-noise ratio presents problems because discernible 
growth of the second mode in the experiment takes place where there is a noticeable presence of 
a higher harmonic - suggesting that nonlinearities are present. 

To address this problem, a new set of low-enthalpy high-speed experiments is carried out for 
spherically-blunted cones, at Purdue University, by Prof Steven Schneider, and at the Institute of 
Theoretical and AppHed Mathematics (ITAM, in Novosibirsk, Russia), by Dr. Alexander 
Shiplyuk (Maslov 2001). The goal of this set of experiments is to measure the growth of second- 
mode disturbances over circular cones in a low-noise environment (Maslov 2001). Consistent 
with previous experiments, Maslov (2001) finds two-dimensional second-mode disturbances to 
be the most unstable. 

For flows where the linear growth of disturbances is a part of the path to transition, a sensible 
way to delay transition is to modify the flow such that the linear growth of distxirbances is 
lowered. For high-speed flows, Kimmel (2003) reviews recent activity in this area, which 
includes wall-cooling, leading-edge modification, and passive porosity. Of these methods, 
passive porosity is studied actively by a research community that includes the ITAM group in 

10 



Novosibirsk, Russia. The central idea of this technique is to exploit the acoustic nature of 
second-mode disturbances by changing the acoustic impedance of the wall (Kimmel 2003). 
Federov et al, (2003) report the stabilization of second-mode disturbances, both numerically and 
experimentally, by replacmg a solid surface with an ultrasonically absorptive coating, in this 
case, a porous metal felt. Better understanding of the second-mode disturbances, achieved 
through careful and deliberate collaboration between experiment and theory, is an important step 
to fiilly exploiting transition-delaying techniques. 

In this report, two cases are investigated. The first is a revisiting of the classical Stetson et al. 
(1984) experiment. The second is an investigation of a recent experiment conducted at ITAM. 
Both cases concern spherically-blunted right-circular cones at zero-incidence. Both cases involve 
supersonic freestream flows such that two-dimensional second-mode instabilities are dominant. 
In both cases, the experimentally determined growth of second-mode disturbances is compared 
with numerical predictions made using LST. 

3.1.2 Numerical Methods 

Two steps are used to obtain a stability estimate for a given flow. The first is to determine the 
steady, mean-flow solution, the basic-state. The second step is to solve a set of disturbance 
equations. In this report, linear-stability theory is used. 

Basic-State Solution Method 

The basic-state equations are the full Navier-Stokes equations, solved using a calorically perfect 
gas model and the Sutherland Law for viscosity and thermal conductivity. The equations are cast 
in a cylindrical coordinate system to exploit the axi-symmetry of the problems. 

The physical space is discretized into a structured collection of finite-volumes. Because parallel 
computers are used, the computational domain is divided into a series of normal-to-wall strips. A 
typical grid arrangement is shown in Figure 1. The overlap regions shown are those cells for 
which "neighboring" processors share information. 
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Figure 1: Distibution of cells among processors in physical-space. 

The inviscid fluxes are determined using a second-order-accurate finite-volume approach. 
Because shock-fitting is used to fix the outer boundary, limiting is not necessary for the inviscid 
fluxes outside of the stagnation-line region. The viscous fluxes are determined using second- 
order accurate finite-differences. The boundary conditions are very standard. At the stagnation 
line, symmetry is used. At the outflow, extrapolation is used. At the wall, no-slip and zero- 
normal pressure-gradient conditions are imposed. Either adiabatic-wall or temperature-specified 
wall can be modeled. As mentioned above, shock-fitting is used for the outer boundary. The 
Rankine-Hugoniot jump-conditions are satisfied, while characteristic information from the 
interior is used as a numerical boundary condition to complete the system. 

To solve the set of implicit equations, the Data-Parallel Line-Relaxation (DPLR) method (Wright 
et al., 1996) is used. To summarize this method, the two limiting cases of explicit integration and 
implicit integration are discussed. Explicit integration provides two benefits: each time-step 
integration is relatively inexpensive, and there is a certain data independence that lends itself to 
parallelization. Implicit integration allows for much larger time steps, hence fewer time steps to 
convergence. However, each time step is more computationally expensive due to the evaluation 
of the linearizations and the solution of the implicit system of equations. As well, the inversion 
of the nine-point block-stencil system is prohibitive, and does not lend itself to paralleUzation. 

Wright et al. (1996) recognize that for a class of flows, similar to the ones studied here, the 
gradients in the wall-normal direction are generally much larger than those in the streamwise 
direction. This same observation is made for the thin-layer Navier-Stokes formulation. The 
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supposition made by Wright et al. (1996) is that the equations are stiffer in the normal direction 
than they are in the streamwise direction. The details of the DPLR method are comprehensively 
presented by Wright et al. (1996), A brief summary is presented here. 

The folly implicit system, written for a given cell indexed (i,j% can be written as follows. 

E ilAjJ,J ^Q>.ij.J - ^5,, (4) 
/=-u=-i 

The term RHSiJ is a vector representing the right-hand-side. The term Ayjj is a matrix which 
contains the appropriate linearization. The term AQt+jj+j is a vector representing the change in 
the solution. What Wright et al. (1996) propose is that an iterative loop (k) be estaWished within 
a given time step. 

tAjAJ AeSi, =RHS,^j - t4v,-.,. AS*,,,, -14,,,,,. ^Qkj.j (5) 
In effect, the streamwise linearizations are lagged. What remains on the left-hand side is a block 
tri-diagonal system of equations. A LU-decomposition is made of the system on the first 
iteration, which speeds up the solution of subsequent iterations. The first iteration, at (t = 0) is 
executed using a CFL number of 0.5, and setting ^g" to zero. Following each iteration, the data 
are communicated between neighboring processes using MPI libraries (Message Passmg 
Interface Forum 1995). For subsequent time steps, ^Q^is set to the converged AQ value from the 
previous time step. The CFL number is gradually increased until the numerical stability of the 
solution is reached. As well, the solution procedure is stabilized using under-relaxation. 

Linear Stability Solution Method 

The fijndamental principle of Imear stability theory is that a small disturbance is assumed in a 
steady, "parallel" flow. Such a disturbance is also assumed to have a wave-like structure in time 
and two spatial directions. To determine the disturbance equations, the Navier-Stokes equations 
are linearized. The first term in a Taylor series is kept, and higher-order-terms are dropped. The 
disturbance flow is assumed to have the form shown in Equation (1), with a given fi-equency and 
wavenumber. The resultmg derivatives in the normal direction are evaluated using fourth-order 
accurate differences. All the disturbances investigated in this report are two-dimensional, ^= 0. 

The boundary conditions used are identical to those used in the basic-state solution, with one 
exception. The fi-equencies of the disturbances investigated are high enough that the thermal 
capacity of a typical wall surface is high enough that no temperature disturbance can be 
supported, thus T' = 0 at the wall. An eigenvalue problem results, where A, B, C, D are block- 
pentadiagonal matrices and x is the disturbance eigenvector. 

(j + fflff + aC + a^Z))»; = 0 (6) 

In terms of the stability problem, either temporal stabiHty (a known, o> found) or spatial stability 
(a known, a found) is considered. Regardless of which problem is considered, one can use either 
a global approach or a local approach. In the global approach, all (or many) eigenvalues are 
found. In the local approach, only a few eigenvalues - in the neighborhood of a guess - are 
found. ARPACK (Lehoucq et al. 1998) is used to find the particular eigenvalues. For the spatial 
stability problem, the spatial problem is converted from quadratic to hnear. If the temporal 
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problem uses 5x5 matrices for each of the blocks, this approach to the spatial problem uses 10 x 
10 matrices for each of the blocks. 

Upon initial investigation of a case, the global method is used to find a large number of 
eigenvalues in the suspected vicinity of a physical eigenvalue. This procedure is used for two 
different cases, e.g. a 500 x 150 case and a 500 x 300 case. The physical eigenvalues remain 
constant (within some convergence tolerance), while the spurious eigenvalues are different for 
each case. Once a physical eigenvalue is identified, the more-efficient local method is used. 

3.1.3 Stetson Case 

The Stetson et al. (1984) geometry is a T half-angle right-circular cone, with a blunted nose of 
radius 3.81 mm. The total length of the model is just over 1 m (5 = 267). The fi-ee-stream flow is 
Mach 8, with zero-incidence with respect to the cone's axis. The Reynolds number (based upon 
fi-ee-stream conditions and the nose radius) is 3.3x10^ The focus of the experiment is the 
second-mode instability, which is thought to be dominant for high-speed flows over smooth, 
convex, axi-symmetric geometries in two-dimensional flow. 

Schneider (2001b) summarizes the Stetson experimental conditions very efficiently. 
Paraphrasing Schneider, the total pressure is 4.00 MPa; the total temperature is 750 K, On the 
cone, surface measurements are taken for pressure and temperature. Basic-state profiles are 
measured using total-temperature and pitot-pressure probes. Basic-state comparisons between 
experimentally determined profiles and computed profiles are discussed below. For the Stetson 
experiment, disturbances are measured using a series of foiir hot-wire anemometers. Starting at 
0.254 m (s = 66:7), disturbance spectra are measured through 0.922 m (s = 242). The measured 
total-temperature spectra are shown in Figure 2; it bears repeating that m=\ corresponds to f* = 
49.5 kHz. The second-mode disturbances correspond to the spectral peaks that appear in the 
range 2.5 < a> < 3. 
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Figure 2: Stetson experiment: measured disturbance spectra of total temperature 

From Figure 2, there follow some observations about the experiment. Firstly, Schneider (2001b) 
notes that the experimental (free-stream) environment is not quiet, thus Figure 2 shows the 
growth of broadband, uncontrolled disturbances that result from the free-stream noise. Secondly, 
one notices the presence of a harmonic of the second-mode disturbance, starting at s = 215. This 
implies that non-linear mteractions may be important downstream of s = 215. Summing up, the 
validity of comparing these experimental results with linear stability theory is limited by the free- 
stream disturbance environment and the possible presence of non-linear interactions. 

Following Malik et al. (1990), many numerical investigators have chosen s = 175 as the place to 
make a comparison with the second-mode growth-rates reported by Stetson. As seen in Figure 3, 
the numerically determined growth rates (including ours) consistently peak roughly 60% higher 
than the peak growth-rate reported by Stetson. According to Schneider (2001b), Stetson cites the 
non-negligible growth rates of second-harmonics of second-mode waves at s = 175 as evidence 
of non-linearity. Stetson believes this is the reason for the disjoint between linear-stability theory 
and the experimentally reported growth rates. 
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Figure 3: Second-mode growth rates as functions of frequency at s=175. 

Schneider (2001b) investigates this idea fbrther, obtaining the raw data from the Stetson 
experiment (and also kindly providing it to us). Part of this data is shown in Figure 2. Discussing 
this data, Schneider proposes that there exists a small linear-growth region. This region would 
begin at s = 195, the ftirthest-upstream location where the amplified frequencies are clearly 
delineated from the noise. The region would end at s = 215, where there appear second-harmonic 
waves with significant amplitude. 

To investigate this theory, Schneider (2001b) combines linear-stabiUty theory results from 
Rosenbloom et al. (1999) and those of Stetson et al. (1984) (using data from Figure 2) to form 
Figure 4. In this figure, the amplitudes of the disturbances are normahzed by their values at s = 
195. The logarithm of the amplitude ratio is the N-factor. Comparing the numerical and 
experimental N-factors in tiie range 195 < s < 215, there appears much better qualitative 
agreement between theory and experiment than appears in Figure 3 at s = 175. 
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Figure 4: Comparison of Stetson N-factors with Rosenbloom, s© = 195. 

Computational Parameters 

The flow conditions are summarized in Table 1. The flow is modeled as an ideal gas with y = 1.4 
and a constant Prandtl number of 0.72. The surface is modeled as adiabatic. Three cases are run 
on parallel computers. For these cases, the domain in the streamwise direction is truncated at s = 
250. The mesh sizes for these cases are 500x150 and 500x300, and 1000x150. 

Variable Normalization Value 

s,S r 3.810 X 10-' m 

P Pl 2.627 X 10"^ kg/m' 

u ul 1.185 X 10^ m/s 

P PI 4.124x10^ Pa 

T T: 5.447 X 10' K 
m Kir 3.110 X 10* rad./s 
a Mr* 2.625 X 10^ rad./m 

Table 1: Non-dimensionalizations used for Stetson case. 
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Basic-State Results 

Veriflcatioii The verification of the basic-state results includes two steps. The first is an internal 
check of the grid-independence of the solution. The second step is a comparison with other 
results, principally those of Esfahanian (1991) and Stetson et al. (1984). 

In order to estimate the truncation error in the basic-state solution, the surface temperatures at ^ 
= 175 are compared for the three meshes used. This does not represent the maximum error in the 
solution. Instead, it represents the level of truncation error in an interesting region of the solution. 
From Table 2, it is evident that the adiabatic surface temperatures are in agreement, among all 
three meshes. It is also noticed that doubling the mesh in the streamwise direction affects the 
convergence less than does doubling the mesh in the normal direction. At any rate, the truncation 
error fdr the 500x150 case, at 5 = 175, can be described as being of 0(10'^ ). The normalized 
deviations, used to estimate the truncation error, are calculated as follows, 

b- 
Norm, Dev. = 

■a 
(7) 

Grid Temperature Normahzed Deviation 

500x150 11.864823 - 

1000 X150 11.864576 2.08 X 10"^ 

500 X 300 11.864030 6.68 X 10-^ 

Table 2: Comparison for surface temperature at s = 175. 

In comparing the results with those of Esfahanian (1991), it is notable that the code written in 
support of this report is a finite-volume, shock-fitting, fiiU Navier-Stokes (NS) solver. The code 
written by Esfahanian (1991) is a finite-difference, shock-fitting, thin-layer Navier-Stokes 
(TENS) solver. The mesh size used by Esfahanian (1991) is 1300x200, The treatment of viscous 
terms distinguishes a TENS solver from an NS solver. Whereas an NS solver includes all the 
viscous terms, a TENS solver drops viscous derivatives in the streamwise direction. This is based 
on the assumption that derivatives in the streamwise direction are much smaller than those m the 
normal direction. For the flow under consideration, this is a valid assumption far from the 
blunted nose. Keeping this in mind, one should expect good agreement between the two 
solutions at a location downstream. Any disagreements are expected to be found in the nose 
region. 

In Figure 5, surface-temperature distributions are compared, showing the entire domain. The 
values obtained using the current method are compared with those foimd by Esfahanian (1991), 
It is evident that the farther from the nose one considers, the better the solutions agree. It is 
thought that the disagreement in the nose region, particularly at the sphere-cone interface, is due 
to the assumptions made to use the TENS formulation. As noted above, the principal assumption 
of TENS is that the viscous derivatives in the streamwise direction are small compared to the 
viscous derivatives in the body-normal direction. Although generally a valid assumption, it 
would be expected that the vahdity would suffer in the nose region. 
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Figure 5: Comparison of surface-temperature profiles, Stetson case. 

To verify the current solutions in the body-normal direction, a series of profiles are compared at 
the streamwise locations s = 175 mds =- 128. In Figure 6 and Figure 7, streamwise velocity 
profiles are compared, showing the classical boundary-layer profile. Comparing the solutions, it 
is apparent that the shock-standoff distances, the boundary-layer heights, and the boundary-layer 
shapes are m agreement, even though slight differences in boundary-layer height are noticed. 
The boundary layers found by Esfahanian (1991) appear to be slightly thicker than those found 
using the current method. This is thought to be due to the slightly different fi-ee-stream 
conditions used by the researchers. Esfahanian (1991) uses a fi-ee-stream Reynolds number of 
S.lxiol The current research uses a free-stream Reynolds number of 3.3x10^ Given the 
subsequent agreement of the LST results, this discrepancy is not thought to be terribly important. 
The graphical agreement of all of these comparisons with the results reported by Esfahanian 
(1991) and Stetson et al. (1984), as well as the demonstrated grid-independence, gives the 
confidence needed to proceed with the LST study. 
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Wall-Temperature Distribution The traditional approach for numerically investigating the 
Stetson et al. (1984) case is to model the cone-wall as being adiabatic. This is the standard 
boundary-condition used by numerical investigators, and was the intent of the Stetson 
experiment. As Schneider (2001b) points out, this assumption is not supported by the 
experimental evidence. However, because this boimdary condition is "standard" it provides an 
opportunity to make usefiil comparisons with other numerical results, as well as an opportunity 
to quantify the difference made by using a more physically-appropriate boundary condition. 

As shown in Figure 8, the computed adiabatic wall temperature distribution is higher than the 
experimentally measured temperature distributions. Schneider further observes that, as 
consecutive experimental runs are made, the measured temperature distribution rises from run to 
run, until an equilibrium temperature distribution is reached. Schneider hypothesizes that the heat 
capacity of the model prevents the wall temperature from reaching the adiabatic value. 
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Figure 8: Comparison of wall-temperatures using different methods, Stetson case. 

An investigation is proposed, whereby the modeled wall temperature would approach the 
adiabatic value near the nose (where the model's heat capacity is less), and approach the 
experimentally determined distribution farther down the cone's surface. This is accompHshed by 
joining a parabola (at the nose) to a line (at the rear). This function is then approximated by a 
composite fimction, with continuous derivatives, which would be more suitable for modeling 
purposes. This distribution is shown in Figure 8. Contrasting the adiabatic-wall boundary 
condition and the cooled-wall condition, there are expected to be differences in the boundary- 
layer profiles. Such differences are important because of the well-known behavior of the second 
mode - that it is tuned to the height of the boundary layer. The wavelength of the most-amphfied 
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frequency is roughly equal to twice the boundary-layer height. Accordingly, the frequency of the 
most-amplified wave can be estimated using the edge-velocity and the estimated-wavelength. All 
else being equal, as the boundary-layer height increases, one expects the most-amplified second- 
mode frequency to decrease. Keeping in mind that as s increases, the boundary-layer height also 
increases, one observes this frequency-decreasing behavior in Stetson's experimental results 
shown in Figure 2. 

Consider the effect of cooling the boundary layer by cooling the wall. For air, the viscosity 
decreases with decreasing temperature. Thus, one expects that by cooling the wall, the boundary 
layer would become thirmer. This expectation is confirmed by examining the temperature 
profiles compared in Figure 9. The cooled-wall boundary layers at s = 175 are roughly 15% 
thinner than their counterparts for the adiabatic wall. Thus, one expects the most-ampHfied 
frequency to be slightly larger for the cooled-wall case. 

Figure 9: Temperature profiles at s=175, different wall-temperature models. Stetson case. 
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Linear-Stability Results 

Verification    The grid-independence of the LST solutions is demonstrated in Table 3 by 
comparing the calculated wavenumbers for the series of different grid sizes. 

Grid 

500 X150 

1000 X 150 

500 X 300 

a 

2.81743 +-0.0524956 i 

2.81737 + -0.0524988 i 

2.81542+-0.0538071 i 

Norm. Dev. (a) 

2.13 X 10 -5 

8.51 X 10"^ 

Norm. Dev. (aj) 

6.09 X 10'^ 

2.50 X 10-2 

Table 3: Comparison for wavenumbers at ® = 2.60, s = 175, Stetson case. 

Many researchers who use numerical methods use Stetson et al. (1984) as a means for 
comparison of their growth rates with the experimentally determined growth rates and other 
researchers' numerically determined growth rates. Some of the numerical investigations of the 
Stetson case include Malik et al. (1990), Esfahanian (1991), Kufiier et al. (1993), Rosenbloom et 
al. (1999), and Zhong and Ma (2002). 

In this report, comparisons are made with the experimental results of Stetson et al. (1984). 
Comparisons are also made with the numerical results of Mahk et al. (1990), who use a 
Parabolized Navier-Stokes (PNS) approach, and with the numerical results of Esfahanian (1991), 
who uses a Thin-Layer (TNLS) approach. Further comparisons are made with the results of 
Rosenbloom et al. (1999). All of the numerical results use a linear-stability formulation to 
determine the growth or decay of disturbances. 

It has become a de-facto standard to make comparisons of growth rates at the location on the 
cone that corresponds to s = 175. This provides a convenient reference for numerical 
researchers; however, comparisons between numerical results and the experimental results of 
Stetson et al. (1984) are problematic. Although there is generally good agreement among 
different researchers' numerical results, linear-stability theory appears to over-predict the 
experimentally determined growth rates by roughly 60%. 

There have been a variety of theories to try to explain this discrepancy. Schneider (2001b) points 
out that Stetson postulates that non-linearities are present at station 175, visible in Figure 7b in 
Stetson et al, (1984). It has been pointed-out that the wall temperature at 5 = i7J is not adiabatic, 
whereas the numerical (basic-state) models assume an adiabatic wall; this effect is investigated 
in this report. Mack (1987) points out that the origin of the disturbances (receptivity) is not 
addressed by linear-stability theory - nor by the experiment. Furthermore, Mack (1987) points 
out that the experimentally determined growth rates are found using the y-locations that have the 
peak wide-band response - not with regard to the location of the peak of an individual frequency 
component. New experimental initiatives, led by Schneider et al. (2002) and Maslov (2001), 
address these issues. These efforts also are discussed in this report. 

Figure 3 shows a comparison of the growth rates, found as functions of frequency at 5 = 175, 
with the results of Stetson et al. (1984), Esfahanian (1991), and Malik et al. (1990). The present 

23 



results are in general agreement with the other numerical results, and show the classical 
disagreement with the experimental results. These verifications provide the necessary confidence 
to make further investigations of the Stetson et al. (1984) case, and to consider the recent 
experimental investigations of Maslov (2001), 

Wall-Temperature Distribution As discussed earlier, comparison of second-mode growth 
rates at s = 175 has become the de-facto standard among computational investigations. The 
growth rates found using the cooled-wall boundary condition are compared with the adiabatic- 
wall growth-rates, and other results, in Figure 3. As expected, the most-amplified fi-equency for 
the cooled-wall case is slightly higher than the most-ampHfied jfrequency for the adiabatic-wall 
case. Also, the peak growth-rate for the cooled-wall case is slightly higher than the peak growth- 
rate for the adiabatic-wall case. 

Using a more physically appropriate wall-temperature boimdary-condition does not by itself 
bridge the apparent disjoint between the numerical and experimental growth-rates. 

N-Factor Investigation Continuing the suggestion of Schneider (2001b), comparisons are made 
of integrated growth-rates among the computations and the experiments. This may be a more 
appropriate comparison because the experiments measure the disturbance amplitudes, then 
calculate the growth-rates based on the change in disturbance amplitudes. The integrated growth- 
rates, N-factors, depend on the two integration-endpoints so and si, and are calculated as follows, 

N = ln ^ = ('-a,ds (8) 
14 j    *» 

To place the current results in the context of the Stetson experiment, the adiabatic-wall, cooled- 
wall, Rosenbloom, and Stetson N-factors are compared, using s = 195 as the reference location; 
these are shown in Figure 4 and Figure 10. With respect to Rosenbloom's results, the current 
adiabatic-wall results appear to provide better agreement with the experimental results. 
Furthermore, the cooled-wall results appear to be in better experimental-agreement than the 
adiabatic-wall results. The current results' agreement with the experimental results is best in the 
range of fi-equencies 2.4 < m < 2.8. Examining the experimentally determined amplitudes fi^om 
Figure 2, this fi-equency range corresponds with those frequencies that are most-amplified in the 
experiment. 
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Figure 10: Comparison of N-factors, So=195, Stetson case. 

The N-factor curves for a series of individual disturbance waves are considered, using s = 195 as 
the reference location. It is surmised that if a discernible linear-growth region exists, the extent 
of such a region can be identified by choosing so = 195. For example, the results for m = 2.62 are 
shown in Figure 11, demonstrating the existence of a linear-growth region. The traditional under- 
prediction of growth-rates at s = 175 might also be explained by examining Figure 11. 
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Figure 11: N-factor comparison, o»=2.62, Stetson case. 

It is proposed that linear-stability theory describes the growth of second-mode disturbances for 
2.4 <m< 2.8, and for the region 195 < s < 215. The frequencies in this range correspond to the 
most-amplified second-mode frequencies. Upstream ofs = 195, it is postulated that the amplified 
second-mode waves have not yet fiiUy distinguished themselves from the noise. Indeed, the 
experimental N-factor curves suggest that the experimental-numerical disjoint at 5 = i7J may be 
attributed to signal-noise problems, rather than to non-linearity. For locations downstream ofs = 
215, perhaps non-linear interactions are important - behavior that cannot be captured using LST. 
Also, the agreement between the experiment and the current predictions appeare better for the 
computations that use an experimentally determined wall-temperature distribution. 

3.1.4 Maslov Case 

The renewed interest in fundamental boundary-layer stability mechanisms includes two ongomg 
experimental efforts; one is at Purdue University, the other is at the Institute of Theoretical and 
Applied Mechanics (ITAM) at Novosibirsk, Russia. The goal of this set of programs is to 
conduct two independent experiments, using the same freesfream conditions and the same 
geometries (Maslov 2001). The two experimental teams choose to fix their respective freestream 
flows at Mach 6, so that the second mode instability is dominant, yet the stagnation temperature 
is low enough that the cost and effort required to realize the flow conditions remains feasible 
(Schneider et al. 2002). 

According to Maslov (2001), the ITAM facility is notable for the long run times possible at high- 
enthalpy conditions. Run times can be as long as 30 minutes, allowing the surface of the 
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experimental models to approach the adiabatic temperature for the conditions. In terms of noise 
(unintended disturbance state) within the flow, the ITAM facility is a conventional tunnel. The 
Purdue facility is known as a quiet tunnel because extraordinary steps are taken to minimize 
noise m the flow, as summarized by Schneider et al, (2002). The noise levels found in 
conventional wind tunnels can be an order of magnitude larger than those found in flight. Such 
changes in the disturbance environment can change the nature of the relevant instability 
mechanisms (Schneider 2001a). Thus, the motivation for minimizing the noise environment at 
the Purdue facility is to allow measurements in ground-test facilities to be more reliable 
predictors of flight performance (Schneider et al. 2002). As both efforts progress, one of the 
interesting results will be to compare how the boimdary-layer stability responses change 
according to the different freestream disturbance environments. 

Experimental results reported by Maslov (2001) are compared, in this report, with the numerical 
basic-state and LST results generated using the methods described herein. In this section, the 
authors paraphrase from the description of the experiment provided by Maslov (2001). The 
experimental model is a T half-angle, right-circular cone, with a nose radius of 0.75 mm and a 
length of 500 mm. Roughly twenty separate experimental runs are made to gather all the data. In 
the experiment, artificial disturbances are generated using a high-frequency glow-discharge 
system. Thermal disturbances are introduced by a single 0.5 mm orifice through the surface of 
the cone, at a distance of 69 mm {s = 92.0) from the nose. Pressure transducers and 
thermocouples are used to measure the surface pressure and temperature, respectively. The local 

mass-flow, lllp^u^ +v^ , is measured using a hot-wire anemometer system. This hot-wire 
system is controlled by a three-component traverse system that provides a positional accuracy of 
0.01 mm. The hot-wke system is used to provide mass-flow measurements for both the basic- 
state and the disturbance-state. 
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Computational Parameters 

The freestream conditions used for the numerical simulation: M«, = 6.00, p,„ = 1.00 MPa, r,cd= 
383 K, are used as a first-order representation of the twenty experimental runs. The conditions 
used for the computation are summarized in Table 4. The ideal-gas model is used, with Pr = 
0.72. The resultmg fireestream Reynolds number (based on nose radius) is Rcr = 9807. The 
computation extends tos = 400. The frequency of the experimental disturbance-state is 275 kHz. 
For the stability calculations, to convert from the dimensional frequency to the non-dimensional 
frequency, note that for/ = 275 kHz, to = 1.57. It is also noted that for all the calculations 
presented in this chapter, only two-dimensional waves are considered - p = 0. 

Variable NormaUzation Value 

sj * 
r 7.500 X 10-^ m 

P PI 4.705 X 10-^ kg/m^ 
u u: 00 8.237 X 10^ m/s 
p Plo 6.333 X 10^ Pa 

T T: 4.670 X 10' K 
m Kir- 1.098 X 10* rad./s 
a 11/ 1.333 X 10^ rad./m 

Table 4: Non-dimensionalizations used for Maslov case. 

Basic-State Results 

Verification Three cases are run using the flow conditions described in Table 4. The mesh sizes 
used are 500 x 150, 1000 x 150, and 500 x 300. The truncation error in the solution is estimated 
by calculating the normalized deviation for a series of values such as wall-temperature. The 
location s = 325 is chosen to be a reference because, as discussed later, it falls within what is 
postulated to be a region of linear growth. As such, it is an interesting place to make 
comparisons. Surface temperatures are compared at s = 325, as well as the normalized 
deviations, are shown in Table 5, showing convergence of 0(10''). 

Grid Temperature Normalized Deviation 

500x150 7.116721 - 

1000 X150 7.116741 2.81 X 10'* 

500 X 300 7.116481 3.37 X 10-' 

Table 5: Comparison for surface temperature at s = 325, Maslov case. 

Comparison with Experiment A surface-temperature comparison is made in Figure 12. 
Maslov shows a comparison with his team's calculated surface-temperatures for laminar and 
turbulent boundary-layers, which is also shown in Figure 12. Maslov cites the temperature rise 
along the surface of the cone as evidence of laminar-turbulent transition. For Figure 12, it is also 
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notable that the surface-temperatures foimd experimentally are not in good agreement with those 
found numerically. Further discussion and investigation are needed to resolve this discrepancy. 
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Figure 12: Comparison of wall-temperatures, Maslov case. 

In the experiment, hot-wire anemometry is used to measure the mass-flow perpendicular to the 
length of the wire. Mass-flow profiles are compared at 5 = 181 and j = 221, in Figure 13. There 
is non-negligible disagreement between the numerical and experimental results. In these (and 
other) comparisons, the numerically determined boundary-layers are consistently thinner than the 
experimentally measured boundary layers. These comparisons are made over the range 143 < s 
< 303. Despite the disagreement in boundary-layer heights, the mass-flow values in the inviscid 
region, for all these figures, agree within the experimental scatter. 
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Figure 13: Comparison of mass-flow profiles, Maslov case. 

Linear-Stability Results 

Veriflcation The truncation error in the LST solution is estimated by calculating the normalized 
deviation for the calculated wavenumber. As with the basic-state solution, the location s = 325 is 
chosen to be a reference. Wavenumbers are compared at s = 325, as well as the normalized 
deviations, are shown in Table 6, showing convergence of 0(10'^). 

Grid a Norm. Dev. (a) Noim. Dev. (ttj) 
500x150 1.74162+ 0.0279057 i _ - 

1000 X 150 1.74162 + 0.0279041 i 9.17x10-' 5.73 X 10"^ 
500 X 300 1.74119+ 0.0280217 i 8.81 X 10"^ 4.46 X 10-' 

Table 6: Comparison for wavenumbers at m= 1.57, s = 325, Maslov case. 

Comparison with Experiments As a part of the Maslov experiment, a glow-discharge system 
is used to introduce a point-source disturbance on the surface of the cone, at a frequency of 275 
kHz {m = 1.57). This frequency is chosen by the experimental team because, using naturally 
occurring disturbances, the largest-amplitude second-mode response is observed at this 
frequency. 

Hot-wire anemometry is used to measure the 275 kHz-response within the boundary-layer at a 
series of surface locations. Using the information from the boundary-layer responses, Maslov 
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(2001) catalogues the amplitudes and phases of the second-mode disturbances in mass-flow. 
Maslov (2001) observes that the two-dimensional waves are the most unstable, agreeing with 
theory and previous experimental observation. Additionally, the team estimates that the 
boundary-layer begins its transition to turbulence at s « 450, This estimate is supported by the 
surface-temperature data shown in Figure 12. 

Thus, the phase of a given disturbance can be defined using a series of locally determined 
wavenumbers. The procedure for phase calculation is very similar to that used for the N-factor 
calculation. 

# W = #0 + f «r ^* (9) 

Phase angle as a ftmction of surface distance is also determined experimentally, as shown in 
Figure 14. The phase of the numerically determined disturbance is determined as described 
above, fixing so such that the phases match at 5 = 324. 
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Figure 14: Disturbance-phase comparison for second-mode wave at o> = 1.57, Maslov case. 

Maslov (2001) is unable to determine, with confidence, the phases upstream of this point due to 
the low disturbance-amplitudes. Downstream ofs = 324, however, there is excellent agreement 
between the numerically and experimentally determined phase angles. This helps to verify that 
the same physical disturbance is being "seen" in both studies. 

Further comparison of amplitude-profiles and phase-profiles of a 2D-disturbance in mass-flow, 
ats = 381, is shown in Figure 15. Both sets of amplitudes are scaled such that their maximum 
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amplitudes are unity. The numerically and experimentally determined amplitudes are in 
reasonably good agreement, considering the differences in boundaiy-layer height noted for the 
basic-state comparisons. It should also be noted that this comparison is made at a location (s = 
381) where non-linear behavior is suspected. This is the only location for which Maslov (2001) 
provides both amplitude and phase profiles for a disturbance. 

5rn-TT 

4N 

I 

|-rTT-r|- 

Maslov 
500 X 300 

' I I ' I I ' ' ' t ' ' ' ' I I I ■ I 
0       0.25      0.5      0.75       1 

I I I I t I I I I I I I I I 

- kl 

.*■ 

I ' ' ' I 1 ■ 

-•-■-.. 

j_ufcM 

\ -I 

1 2 3 
phase(po) 

Figure 15: Amplitude- and phase-profiles for mass-flow, © = 1.57, s = 381, Maslov case. 

Maslov (2001) determines the relative growth of the amplitudes of disturbances at 275 kHz. 
These relative amplitudes are converted into N-factors using so = 300. Although the choice for so 
is arbitrary, the reason for its choice can be seen in Figure 16. The experimentally- and 
numerically-determined N-factors are compared, postulating that a linear-growth region begms 
near s = 300. There is reasonably good agreement among the experimental and numerical 
amplifications m the region 300 < s < 350. Downstream of this, it is suggested that the 
discrepancy between linear-stability theory and the experimental results is due to non-linear 
amphfication. The discrepancy upstream of 5 = 300 requires fijrther discussion and investigation. 
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Figure 16: Comparison of second-mode N-factors at o = 1.57, Maslov case. 

3.2 Nonequilibrlum Chemistry 

Regarding the investigation of more energetic flows as would be found in flight, we have used 
the numerical methods described above and modelled a 27 degree half angle, 20 cm long, 2.54- 
cm nose radius untapered, axisymmetric cone. The purpose is qualitative comparison with 
Johnson & Candler at Mach 13,6 and 20 km altitude who studied a similar geometry but tapered 
and including windows. We considered a 5-species nonequilibrium-chemistry model: N2, 02, 
NO, N, O. Figure 17a shows our temperature predictions and Figure 17b shows those of 
Johnson & Candler. Again the comparisons are very good, lending confidence to our 
formulations. 
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Figure 17: Comparison of basic state with tliat of Johnson & Candler. 

Stability calculations are being finaUzed and will be reported in a future publication. 
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3.3 Hyper2000 fore-body 

For our work on the Hyper2000 forebody, we anticipated that the compression ramps complicate 
the problem and developed an adaptive-grid scheme based on the SIERRA method (Laflin & 
McRae) to capture the details in the comers. The disturbance to the shock wave results in a 
shock-wave line that is hard to estimate ahead of time and thus it is very difficult to use a shock- 
fitting method. To develop the basic-state code, we first examined a simpler 2D 2.5-degree-half- 
angle blunt nose with a 5.5-degree compression comer at x=2.2. Even though the comer is 
farther upstream, this test case is representative of the Hyper2000. 

The SIERRA weight fimction, developed by Laflin & McRae, is easy to compute and promotes 
both grid-node clustering and grid-alignment adaptation. Before application to the complicated 
Hyper2000 geometry, we verified the algorithm for a 2D, 7-degree-half-angle blunt nose without 
any comers. Then Figure 18a shows the adapted grid for the compression-comer geometry. 
Figure 18b shows the density contour to be qualitatively compared with a density contour in the 
vicinity of the comer firom Balakimiar (Figure 18c, AJAA 2002-2848). 

Figures 18a through 18c 

Figure 19a shows computed streamlines in the vicinity of the comer again for qualitative 
comparison with Balakumar's resulte (Figure 19b). The comparisons are very good. 

Figure 19. 

Next we solve the flow field for the compression comer situated fiirther downstream using a 
shock-capturing method (Figures 20 and 21), We now have a problem with computational 
memory since the number of grid points required is very large. In addition, we have tried using 
the industry-standard COBALT flow solver to compute the flow field of the Hyper2000 
geometry (2 compression comers). Figure 22 shows the grid, and figure 23 shows the density 
contours. Still there is a problem with insufficient computer resources, we cannot apply enough 
grid points. 
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Figure 20: Shock-cap grid for nose with a 
compression corner at x=13 

Figure 21: Flow velocity contour 

Figure 22: COBALT grid for Hyper2000 

0.3 - 

Figure 23: COBALT density contour 

This necessitates dividing the region into several domains and computing in parallel to 
accurately model the Hyper2000 geometry. To verify our methods, we chose a simple geometry, 
namely a 7° half angle blunt nose without a compression comer. Figure 25 shows velocity 
contours from parallel computations of three regions as shown in figure 24. The procedure is to 
calculate the flow properties in the first region usmg downstream boundary conditions 
determmed from interior conditions. Then using resuhs of the first region as upstream 
conditions, we calculate the flow properties in the second region, and so forth for any number of 
regions in parallel. Then we go back to the fffst region and iterate until convergence. The 
method adapts to multiple processors - each region is assigned to a processor - and Message- 
Passing-Interface (MPI) is used to exchange information between the processors. 
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Figure 24: Three regions in parallel Figure 25: Flow velocity contour 

Next we demonstrate the same method for a T half angle blunt nose with a comer using five 
regions as shown in figure 26. Figure 27 shows well converged velocity contours for the 
geometry. 

Figure 26: Five regions boundary 
(nose with a comer at x=18) 

Figure 27: Flow velocity contour 
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Once basic-state results are jBnalized, stability calculations on the second mode will be 
completed for the Hyper2000 forebody using our existing verified codes. 

4 Current Status and Future Plans 

Work on the computation of hypersonic laminar-turbulent transition continues unfunded. 
Collaborations with Maslov will continue. Ian Lyttle's PhD dissertation involving the round 
cone and nonequilibrium chemistry will be completed in May 2003. The basic state (both ideal 
gas and non-equilibrium chemistry) is completed and stability calculations are underway. 
Yasutoshi Asada's PhD dissertation involving the Hyper 2000 forebody will be completed in 
May 2004. The basic state is nearly finalized and stability calculations will be underway shortly 
using our existing verified codes. Prof Reed attended the LASTRAC Workshop at NASA 
Langley in November 2002 on the use of the linear stability theory/nonlinear paraboUzed 
stability equation code LASTRAC (Langley Stability and Transition Code) - this tool is well 
developed and validated and will also be used to complete the present research on second-mode 
instabilities. 

The computational work has direct application to the DARPA QSP program; Prof Reed is 
working to develop the distributed roughness laminar flow control concept in coordination with 
Prof William Saric at Arizona State University. The program involves a supersonic wind-tunnel 
test at ASU, a flight test on an F-15B out of NASA Dryden, and a flight-Reynolds-number test in 
the Unitary Plan Wind Tunnel at NASA Langley. Close coordination with the airframers also 
under contract is a key element of the QSP program. 
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